History of Particle Detectors

430. Heraeus Seminar – History of Particle Detectors

Timeline of Particle Physics and Instrumentation

430. Heraeus Seminar – History of Particle Detectors

Early Image Detectors

Second half of 19th century

- growing interest in meteorological questions
 - climate, weather phenomenon, cloud formation
- people started to study condensation of water vapour in the lab
 - also motived by raising use of steam engines
- John Aitken built a "Dust Chamber" 1888
 - water vapour mixed with dust in a controlled way
 - result: droplets are formed around dust particles
 - further speculations
 - electricity plays a role (from observations of steam nozzels)
- Charles T. R. Wilson became interested
 - first ideas to build a cloud chamber 1895 to study influence of electricity/ions
 - also to solve question why air shows natural slight conductivity

430. Heraeus Seminar - History of Particle Detectors

0

Cloud Chamber I

• Cloud chamber (1911 by Charles T. R. Wilson, Noble Prize 1927)

Condensation droplets

- chamber with saturated water vapour
- charged particles leave trails of ions
 - water is condensing aound ions
- visible track as line of small water droplets

- high speed photographic methods

- invented by Arthur M. Worthington 1908
 to investigate the splash of a drop
- ultra short flash light produced by sparks

First photographs of α -ray particles 1912

Cloud Chamber II

- Arthur H. Compton used the cloud chamber in 1922 to discover scattering of photons on electrons (Compton effect) (Nobel Prize 1927 together with Charles T. R. Wilson)
 - X-rays emitted into cloud chamber
 - photon scattered on electrons (recoiling electron seen in cloud chamber)
 - photon with reduced energy under certain angle visible by photo effect or Compton effect again

430. Heraeus Seminar – History of Particle Detectors

Cloud Chamber III

Was also used for the discovery of the positron

- predicted by Paul Dirac 1928 (Nobel Prize 1933)
- found in cosmic rays by Carl D. Anderson 1932 (Nobel Prize 1936)

Paul Dirac

Nuclear Emulsion I

- Pioneered by Marietta Blau between 1923 – 1938 (no Nobel Prize)
 - photographic emulsion layer, 10 200 μm thick, uniform grains of 0.1 - 0.3 μm size
 - very high resolution for particle tracks
 - analysis of developed emulsion by microscope

430. Heraeus Seminar - History of Particle Detectors

nuclear disintegration from cosmic rays, observed1937 for the first time

Since early 20th century

- important role of photography to study radioactivity
- but capability to make individual tracks visible not seen until nuclear emulsion technique was developed

430. Heraeus Seminar - History of Particle Detectors

Nuclear Emulsion III

- Still used in actual experiments with highest precision requirements over a large volume
 - $\rightarrow v_{\mu}$ beam sent from CERN to Gran Sasso Underground lab in Italy (732 km)
 - \rightarrow OPERA experiment is searching for v_{τ} appearance after neutrino oscill. $v_{\mu} \rightarrow v_{\tau}$
 - need to reconstruct τ decays (v_{τ} + N $\rightarrow \tau$ + X) (few ~100 µm track length)
 - 235'000 "bricks" (1.7 ktons) of lead + emulsion sheets

430. Heraeus Seminar - History of Particle Detectors

automatic emulsion scanning

single brick

CNGS beam

Bubble Chamber I

Intented 1952 by Donald Glaser (Noble Prize 1960)

- similar to could chamber
- --- chamber with liquid (e.g. H₂) at boiling point ("superheated")
- charged particles leave trails of ions
 - formation of small gas bubbles around ions

was used at discovery of the "neutral current" (1973 by Gargamelle Collaboration, no Noble Prize yet)

430. Heraeus Seminar - History of Particle Detectors

Bubble Chamber II

BEBC (Big European Bubble Chamber) at CERN, 1973 – 1984

- largest bubble chamber ever built (and the last big one...), Ø 3.7 m
- 6.3 million photographs taken, 3000 km of developed film
- now displayed in permanent exhibition at CERN

430. Heraeus Seminar – History of Particle Detectors

Bubble Chamber III

430. Heraeus Seminar - History of Particle Detectors

Bubble Chamber IV

Advantages of bubble chambers

- liquid is BOTH detector medium AND target
- high precision
- Disadvantages
 - --- SLOW!!!
 - event pictures taken with cameras on film
 - film needs to be developed, shipped to institutes
 - and optically scanned for interesting events
 - Need FASTER detectors (electronic!)

However: Some important social side effects of bubble chamber era...

- scanning was often done by young "scanning girls" (students)...
- ... who later got married with the physicists...

430. Heraeus Seminar – History of Particle Detectors

Early "Electronic" Detectors - Spinthariscope

- 1911: Ernest Rutherford + studied (elastic) scattering of α particles on gold atoms (famous Rutherford experiment)
 - discovery of atomic nucleus: small (heavy) positively charged nucleus orbited by electrons
- Zinc sulfide screen with microscope Hans Geiger (spinthariscope by William Crookes 1903) was used to detect scattered α particles
 - light flash was observed by eye
 - to increase light sensitivity, "bella donna" (from the deadly night shade plant = Tollkirsche) was often used to open eye's pupil

Michael Hauschild - CERN, 27-Apr-2009, page 14

Ernest Rutherford

Early Electronic Detectors - Electroscope

- Gold-leaf electroscope already invented 1787 by Abraham Bennet
- End of 19th century raising interest on electricity in gases
 - cathode ray tubes, glow discharges
 - observation: charged electroscope is loosing its charge in dry air after some time
 - source of conductivity? ionisation by recently discovered radioactivity?

Victor Hess discovered cosmic rays 1912 (Nobel Prize 1936)

- used calibrated string electrometer by Theodor Wulf
- found increasing ionisation at higher altitudes at a series of balloon ascents
 - not related to sun radiation! ۵

Michael Hauschild - CERN, 27-Apr-2009, page 15

430. Heraeus Seminar – History of Particle Detectors

early cathode ray tube

Geiger-Müller Tube

The Geiger-Müller tube (1928 by Hans Geiger and Walther Müller)

- Tube filled with inert gas (He, Ne, Ar) + organic vapour
- Central thin wire (20 50 μm Ø), high voltage (several 100 Volts) between wire and tube

- Strong increase of E-field close to the wire
 - electron gains more and more energy
- above some threshold (>10 kV/cm)
 - electron energy high enough to ionize other gas molecules
 - newly created electrons also start ionizing
- avalance effect: exponential increase of electrons (and ions)
- measurable signal on wire
 - organic substances responsible for "quenching" (stopping) the discharge

430. Heraeus Seminar – History of Particle Detectors

Coincidence Units

"Zur Vereinfachung von Koinzidenzzählungen", Walther Bothe 1929 (Nobel Prize 1954)

- single tube has no information on direction of incoming particle
 - two or more tubes giving signals within the same time window give direction
 - also information if two particles come from the same decay

430. Heraeus Seminar - History of Particle Detectors

cosmic ray telescope 1934

Photo Multiplier Tubes (PMT)

Invented 1934 by Harley lams and Bernard Salzberg (RCA Coorperation)

- based on photo effect and secondary electron emission
- sensitive to single photons, replaced human eye + belladonna at scintillator screen
- first device had gain ~8 only but already operated at >10 kHz (human eye: up to 150 counts/minute for a limited time)
 - nowadays still in use everywhere, gain up to 10^8
 - recent developments: multi-anode (segmented) PMTs, hybrid and pure silicon PMs

430. Heraeus Seminar – History of Particle Detectors

 \odot

Multi Wire Proportional Chambers I

- Geiger-Müller tube just good for single tracks with limited precision (no position information inside tube)
 - in case of more tracks more tubes are needed or...
- Multi Wire Proportional Chamber (MWPC) (1968 by Georges Charpak, Nobel Prize 1992)
 - put many wires with short distance between two parallel plates

Georges Charpak, Fabio Sauli and Jean-Claude Santiard

430. Heraeus Seminar - History of Particle Detectors

Michael Hauschild - CERN, 27-Apr-2009, page 19

Georges Charpak

Multi Wire Proportional Chambers II

Multi Wire Proportional Chamber (MWPC)

- was first electronic device allowing high statistics experiments
- with multiple channels and reasonable resolution
- Typically several 100 1000 wires, ~ 1 mm spacing
 - \rightarrow if charged particle is passing the MWPC \rightarrow one wire gives signal

If many MPWCs are put one after each other

- each particle creates one point per MWPC (~300 µm resolution per point)

430. Heraeus Seminar – History of Particle Detectors

Michael Hauschild - CERN, 27-Apr-2009, page 20

 σ_{x}

d/2

Resolution of MWPCs limited by wire spacing

- → better resolution → shorter wire spacing → more (and more) wires...
 - larger wire forces (heavy mechanical structures needed)
 - (too) strong electrostatic forces when wires too close to each other
- Solution by A. H. Walenta, J. Heintze, B. Schürlein 1971
 - obtain position information from drift time of electrons (fewer wires needed)
 - drift time = time between primary ionization and arrival on wire (signal formation)

start signal (track is passing drift volume) has to come from external source: scintillator or beam crossing signal

 Need to know drift velocity v_D to calculate distance s to wire (= track position within the detector)

$$s = \int_{t_{start}}^{t_{stop}} v_D dt$$

Michael Hauschild - CERN, 27-Apr-2009, page 21

430. Heraeus Seminar – History of Particle Detectors

Time Projection Chamber (TPC)

A 3D-imaging chamber with rather long drift length

Problem: pads have to be

- homogeneous B- and E-fields
- anode plane equipped with MWPC wire chambers

430. Heraeus Seminar – History of Particle Detectors

Time Projection Chamber (TPC)

- Invented by David Nygren (Berkeley) in 1974
- Proposed as central tracking device for the PEP-4 detector at the PEP e⁺e⁻ collider at SLAC 1976
- More (and even larger) TPCs were built or are planned at other colliders
 - → TRISTAN (KEK, 2 x 32 GeV e⁺e⁻, 1986 1995)
 - TOPAZ
 - → LEP (CERN, 2 x 104 GeV e⁺e⁻, 1989 2000)
 - ALEPH, DELPHI
 - --- RHIC (BNL, 2 x 100 GeV/nucleus, 2001)
 - STAR
 - LHC pp and Pb-Pb collider (CERN)
 - ALICE
 - → ILC e⁺e⁻ collider
 - ILD

430. Heraeus Seminar - History of Particle Detectors

Recent Developments: Micro Pattern Gas Detectors (MPGD)

Replace wires at TPC with Micro Pattern Gas Detectors

- MicroMegas (metallic micromesh)
- **GEM (Gas Electron Multiplier)**

Concept

۵

- 2D structures with holes + underlying pads
- Gas amplification inside holes, collect electrons on small pads, few mm²

MicroMegas

enlarged view of the field near the GEM hole (schematic) (GEM) (GE

430. Heraeus Seminar – History of Particle Detectors

track image

Wire Chambers – Ageing black magic....

Wire Chambers don't work/live forever

- gas avalance region close to wire is region of plasma formation
 - ...and plasma chemistry not well understood in general

Avalance region

- dissociation of detector gas and pullutants
- formation of highly active radicals
- polymerization of organic quenchers
- insulating deposits on anodes and cathodes

Anode: increase of wire diameter reduced and variable E-field variable gain and energy resolution

Cathode: ions on top of insulating layer cannot recombine built-up of strong E-field across insulating layer electron field emission and microdischarges

"Malter effect", first seen by L. Malter in 1936: L. Malter; Phys. Rev. 50 (1936), 48

Conclusions of an ageing workshop many years ago: CO₂ helps with water, and alcohol admixtures... HAMPAGNE

hard deposits. typically SiO₂ (quartz)

Michael Hauschild - CERN, 27-Apr-2009, page 25

whiskers. typically carbon fibers

Gaseous Detectors in LHC Experiments

- Mainly used in Muon Systems (ALICE, ATLAS, CMS, LHCb)
 - precise muon tracking (drift tubes) and triggering (RPC plates)
- Also in Inner Tracking system (ALICE, ATLAS, LHCb, TOTEM)
 - mainly straw tubes = small, light weighted tubes
 - but not the innermost detector layer
 - domain of semi conductor (silicon) detectors

Specific LHC challenges (for gaseous detector systems)

- high track rate (25 ns) and density (~1000 tracks per bunch crossing)
 - need short drift times (avoid integrating over too many bunch crossings) + high granularity = fast gases, small sized detectors
 - need "ageing-free" gases/detectors
 - lots of effort spent over years in this field
 - extensive irradiations with Gamma irradiation source, lab studies with X-ray sources etc.

Solid State Detectors

First transistor was invented 1947 by William B. Shockley, John Bardeen and Walter Brattain (Nobel Prize 1956)

transistors and diodes became common soon after

- Germanium diodes were used for particle detection
 - p-type and n-type doped silicon material is put together and operated with reversed voltage

- around junction of p- and n-type material depletion zone is created
- zone free of charge carriers
 - no holes, no electrons
 - thickness of depletion zone depends on voltage, doping concentration

charged particle typically creates 20'000 - 30'000 electron/hole pairs in $300 \ \mu m$ thick material -> sufficient signal size

430. Heraeus Seminar – History of Particle Detectors

Silicon Strip Detectors

Now take a large Si crystal, e.g. 10 x 10 cm², 300 µm thick

+

make bottom layer p-type

and subdivide the top n-type layer into many strips with small spacing

many diodes next to each other (like MWPC at wire chambers) with position information

- Advantage compared to wire/gas detectors
 - strip density (pitch) can be rather high (e.g. ~20 µm)
 - high position accuracy

0

but also many electronics channels needed

430. Heraeus Seminar – History of Particle Detectors

The first Silicon Strip Detector

- First operational silicon strip detector used in an experiment (NA11 at CERN) by J. Kemmer, R. Klanner, B. Lutz et al. 1983
 - B. Lutz was founder of MPI Halbleiterlabor in Munich Max-Planck-Institut
 - NA11 aimed to search for new short lived particles Halbleiterlabor
 - first observation of D_s many branching ratio and lifetime measurements

430. Heraeus Seminar – History of Particle Detectors

8 silicon strip planes (4 groups of 2 planes each with tilted strips to measure xy coordinate)

24 x 36 mm² size per chip 1200 strips, 20 µm pitch 240 read-out strips 4.5 µm single hit resolution

Si-Detector Electronics and Si-Pixels

- Silicon strip detectors have a laaaarge number of electronics channels, ~10⁷ each for ATLAS and CMS Si trackers
 - requires highly integrated chips for amplification, shaping, zero suppression (only information of strips with signals is read-out) and multiplexing (put all strip signals on a few cables only)
 - electronics is directly connected to the sensor (the "multi-diode") via wire bonds

430. Heraeus Seminar – History of Particle Detectors

Recent Developments: Hybrid Technologies

- Combine MPGD gaseous detector with silicon pixel detector
- Use MediPix2/TimePix chip as active TPC "padplane" for ILC detector
 - MediPix2 = 256x256 pixels with 55x55 µm² size for medical applications (X-ray film replacement)
 - MicroMegas mesh (provides gas amplification) integrated on top of pixel

Individual ionization visible: the digital Bubble Chamber is in reach

430. Heraeus Seminar – History of Particle Detectors

Detector History

- Cloud Chambers, Nuclear Emulsions + Geiger-Müller tubes dominated until the early 1950s
 - Cloud Chambers now very popular in public exhibitions related to particle physics
- Bubble Chambers had their peak time between 1960 and 1985
 - last big bubble chamber was BEBC at CERN
- Wire Chambers (MWPCs and drift chambers) started to dominate since 1970s
 Image: Silicon
- Since late 1980s solid state detectors are in common use
 - started as small sized vertex detectors (at LEP and SLC)
 - now ~200 m² silicon surface in CMS tracker

Most recent trend: hybrid detectors

- combining both gaseous and solid state technologies

430. Heraeus Seminar – History of Particle Detectors

A typical Today's Particle Detector

Cut-away view of CMS

Coil

Tracker Calorimeter

Muon Detector and iron return yoke

430. Heraeus Seminar – History of Particle Detectors