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Outline

● Astroparticle physics

– Cosmic rays, VHE gamma-rays, neutrinos
● Detection of cosmic rays

● Detection of gamma rays from ground

● G-APDs for  Cherenkov telescopes

● Two slides about large hemispherical PMTs
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Particle Astrophysics
What are the cosmic accelerators?

Use:

– Cosmic Rays

– Gamma Rays

– Neutrinos

Often one deals with  very low fluxes

Need large detector areas/volumes

-> Atmosphere / ice / water
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Air Showers

● Not like in a laboratory
● Remote places
● Weather
● Inhomogenous detector medium
● Background ( light from the sky ) 

Readout:
- Fluorescence light
- Cherenkov light
- Particles
- Radio

E. Lorenz

Use measured air shower 
characteristics for:

- calorimetry
- particle ID
- tracking
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Light from Air Showers

- Emitted by shower particles
- Continuum emission
- Typically 10-3 of the energy of the primary
- Directed forward in narrow cone 

* ~1deg opening angle
* Illuminates 100,000 m2 area on ground

- Used to detect cosmic rays and gamma rays
with energies above E > 1010 eV 

- Deexcitation of atmospheric nitrogen 
molecules

- Line spectrum
- Typically 10-5 of the energy of the primary
- Isotropic emission
   → can be viewed from large distances
- Used to detect particles with energies

 above E > 1016 eV

Cherenkov Light
Fluorescence Emission



Nepomuk Otte 6

Pierre Auger Observatory

Surface array:
1600 stations
1.5 km spacing

Fluorescence detectors:

4 telescope enclosures
6 telescopes per enclosure
24 telescopes in total

Detection of cosmic rays above 1016 eV

Detects shower particles coming to ground
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One 4-fold Event

E~1019 eV
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Fluorescence Detectors

- Shower observed from 20-30 km distance
- Shower development takes several 100 μs

Reconstruct:
- Energy from the light yield
- Particle ID from shower maximum
- arrival direction with stereoscopy and

Information from surface array

One AUGER fluorescence telescope
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Observation of Cosmic Rays from 
Space

shower parameter:

angular size: 
a few degree up to several ten degree 
(≈5° for 1^20eV zenith angle < 75°) 

photons arriving at EUSO: 
≈550 ph/m² (1020eV zenith angle 45° in 
half of FOV of EUSO optics)

shower duration: ≈100µs…≥300µs

wavelength range: 330nm…400nm

Cherenkov light:
opening angle: ≈1° -> 1km  diam. for 
shower in 10km at 60° zenith angle
photons arriving at EUSO: ≈ 500 ph for 
albedo of 5%
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Gamma-Ray Instruments

water Cherenkov detectors
and particle detectors

Cherenkov telescopes
satellites

gamma-ray energy

100 GeV 1 TeV 10 TeV10 GeV1 GeV
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Imaging Air Cherenkov Technique

~ 10 km

Particle
shower
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~ 120 m

Gamma
ray Cherenkov light from an air shower

illuminates ~100,000 m2 area

faint and fast bluish flash of light
2 photons per m2 for a 50 GeV gamma ray
2-3 ns spread in photon arrival time

Energy threshold limited by:
1. The number of collected Cherenkov
    photons
 - large mirror surfaces (~200 m2 )
 - high efficiency photon detectors
2. Separation of shower signals from

     fluctuations in the night sky background
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Imaging Technique

Background:

● Charged cosmic rays (hadrons)
●103...104 times more abundant

Background rejection:

● Based on shower shape
●Orientation of the image

Gamma 
ray

Proton

MAGIC I camera
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Observation of Gamma-Rays from 
Ground

Energy Range: ~100 GeV - ~10 TeV

Energy Resolution: ~15%

Angular Resolution: 0.05°- 0.1°

Sensitivity: 1Crab in < 30 sec

Field of View: ~4°

VERITAS in Arizona

MAGIC in the Canaries

H.E.S.S. In Namibia

80+ sources detected in the last 20 years

Now in planning: arrays of ~50 telescopes
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Use of Photomultiplier in IACTs

PMT advantages/disadvantages

Large areas
Large gain
Single photoelectron resolution
Well established technology

Sensitive to magnetic fields
Damaged in daylight/sunlight
Afterpulsing
Use of high voltage
Bulky and fragile
Aging
Costly
Average QE <20%

MAGIC I camera

Cherenkov telescopes f/D >= 1
-> large plate scale
-> large photon sensors 1” diameter
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Cherenkov Light Detection Efficiency
Cherenkov telescopes

 have an optical 
throughput of about 10%

The detection efficiency of the
photomultipliers is the bottleneck

Higher throughput means:
- lower threshold
- better energy resolution
- better angular resolution
- better background

         suppression

With immediate impact on
the science:

- deeper into the universe
- many sources have intrinsic cutoffs below 100 GeV
- morphology studies:

pulsar wind nebula
shell type supernova remnants
pair halos around AGN 

High efficiency sensors
→ better physics
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The G-APD
a promising photon detector concept invented in Russia in the 80’s

available now in large quantities and from many producers

P. Buzhan et al. 
http://www.slac-stanford.edu/pubs/icfa/fall01.html

. . .

V b i a s

- High intrinsic QE of a semiconductor
- Geiger mode operation → sensitive to single photons
- Bias voltage < 100 V
- High intrinsic gain
- Is not damaged in daylight
- Mechanical and electrical robust

Major advantages:
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Factors limiting the 
Photon Detection Efficiency

● Geometrical occupancy of the Geiger diodes (aimed at 70%) 

● Reflection losses on the SiPM surface (<10% possible)
– Can be tuned by coating

• λmin determined by thickness of surface implantation
• λmax determined by thickness of active volume

● Classical Quantum efficiency (~100%)

● Breakdown Initiation Probability (~90%)
– Function of the electric field in the avalanche region 

Currently achieved 20-40%
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The short List of Requirements
- Price:  G-APD are presently 5-10 times more expensive than PMT

want to be cheaper than PMTs
(not a matter of production costs)

- PDE 300nm-600nm: 100% is the limit but we would even be happy with 60% in the blue
seems possible in the future  Biggest challenges

- Size: 5x5 mm2 to 10x10 mm2

- Dark count rate: < 100 kHz/mm² needed
Thermal generated Charge carriers, afterpulsing, optical crosstalk
achieved by some devices at room temperature otherwise
moderate cooling necessary

- Temperature Dependence of Gain: varies between ~5%/K and 0.3%/K; 0.3%/K is ok
Requires large breakdown voltages, small cell capacitances, high overvoltages 

- Optical Crosstalk: can be several 10% needed are less than a few %
Trenches between cells → now pursued by most producers

Suitable G-APD become available now
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Test on La Palma with MAGIC
MPPC-33-050C from Hamamatsu:

            sensor size: 3x3mm²
            single APD size: 50x50µm²
            nominal bias: 70.4V
            dark rate at nominal bias: ~2MHz
            gain at nominal bias: 7.5*105

                     crosstalk at nominal bias: 10%

Array of 4 MPPCs:
Light catchers with factor 4 
concentration; 6x6mm² to 3x3mm²

MAGIC Pixel Size

One bias for all MPPCs A big promise



Nepomuk Otte 20

Array mounted next to the 
MAGIC camera for 3 nights for 
fine tuning and tests

• Array not removed or 
protected during day

• It was raining for one day; no 
problem!

G-APDs signals recorded by the 
MAGIC DAQ for each trigger

Dark rate at night ~ 20 MHz
10 times higher than intrinsic dark rate of MPPC
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Recording Photons from Air 
Showers with G-APD

4 G-APDs in the focal plane of MAGIC

Signals of surrounding PMTs
MAGIC

G-APD signals

One recorded event:
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Shower Signals: MPPC vs PMT

event selection:
two PMTs next to MPPCs with 
more than 15 photoelectrons 
in each tube

~300 events from ~30 min data

On average the MPPC 
records 1.6 times more 
photons
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A Prototype G-APD Camera

A test module of a  G-APD camera
 built at ETH

Thanks to I. Braun (ETH) for providing
 picture and info about DWARF/FACT

Tests planned with one of the former 
HEGRA telscopes (CT3) this summer

Reactivation of the 
CT3 telescope of HEGRA
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More Camera Developments

Hiroko Miyamoto

MPI for Physics, Munich

For EUSO and Cherenkov telescopes
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Neutrino Detectors

TeV telescopes:
ICECube/Antares/Nestor,Baikal,Dumond
...

MeV detectors
Frejus, Macro, IMB.Kamioka,SuperK/SNO ....

Use all large surface PMTs
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Large Spherical PMT

Used in:
- Surface Cherenkov detectors: 

       Auger SD, ICE top
- Neutrino detectors:

ICEcube, ANTARES, 
             Baikal, ...
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• Bombard fast scintillation 
crystal with photoelectron

• Readout scintillation light with 
G-APD

Daniel Ferenc et al. NIM-A 567 (2006)

Hemispherical Light Amplifier
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Prevalent 
direction of 
electric field

Standard 
photocathod

e

MPPC

-HV

0 V

NIM­A, Volume 594, September 11, 2008

See http://tipp09.kek.jp/

Vacuum Silicon Photomultiplier

Direct detection of 10kV photoelectron
With MPPC

Group in Naples Italy
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Summary
● There is big need for high efficiency photo-detectors in astroparticle 

experiments

● All diameters between a few mm to several 10 cm

● All application have in common

– Low photon intensities in mostly large backgrounds

– Blue sensitivity 300-400 (600) nm

– Single pe resolution

● Currently used by all experiments: the classical PMT

● The G-APD is a promissing photo detector

– Some applicable G-APDs exist

– We want more

● Lower prices
● Higher photon detection efficiencies 
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Backup
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Schwarzschild-Couder Telescope

Advantage:
Small plate scale
0.05 deg → 5mm

No need for large photon 
detectors

Present AGIS base line
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Future Plans

J. Buckleys view of AGIS

● $ 120 million project
●Array of ~ 50 telescopes
●Schwarzschild Couder telescopes

● 8° FoV
● Camera with 15 000 pixel
● Pixel size: 3x3 – 5x5 mm2

Cherenkov photon density on ground for a 50 GeV gamma ray

Large arrays of Cherenkov telescopes (~50)
Extending energy range to lower and higher energies

Two ongoing initiatives:
AGIS in the US
CTA in Europe

AGIS:
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Blue and Green sensitive Devices

Blue light is absorbed within the
first few 100 nm

→ thin entrance windows

Electrons have a higher probability
of starting an avalanche

→ Need p-on-n structure 
for blue sensitivity

Or new concepts
e.g. back side illumination

D. Renker, E. Lorenz, JINST 4 )2009)

Pursued by the HLL/MPI for Physics

Astroparticle experiments need 
Blue sensitive devices 
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Temperature Dependence

Temperature dependence of parameters
increases systematic uncertainties

- Compensate with external thermistor
- Thermal control ( ~1 degree)
- Do a good job producing devices

* Low breakdown voltages
* Low cell capacitances
* High overvoltage

Solutions:

0.1% per 1°C

0.5% per 1°C !DG= Tempcoef*BrkdwnVoltage/DOvervoltage

- energy estimation
- flux measurements

A good device
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Dark Counts

Factor 2 change every 5° C

Factor 2 change every 12° C

Additional effects:
● Afterpulsing
● Tunneling

G-APD are noisy devices:

Mostly thermal generated e/h-pairs

1mm2 G-APD from ST Microelectronics

100 kHz – 1 MHz per mm2

Rate depends on many parameters

In astroparticle physics: needs to 
be lower than photon background rate

Affects lower energies
Trigger: increase in accidental triggers
Analysis: noise in shower images

Rates of 100 kHz/mm2 should do

Needs to be below the photon
background from the night sky
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Optical Crosstalk

Increase of accidental triggers in IACT
-> higher energy threshold

Avalanches emit photons
~1 photon per 105 e/h-pairs

Causes additional cells to fire -> pile up

Non-negligible probability that 5 or more cells fire

Probability needs to be ~1% not to 
be dominating the rate of accidental triggers

IEEE PTL, VOL. 18, NO. 15,  2006
Most promising solution: trenches between cells

Example from ST Microelectronics
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Future Plans in VHE Astrophysics

Goals:

● 10x improved sensitivity
● Extended energy range

European initiative:
CTA

US initiative:
AGIS

Require:
● Large arrays of Cherenkov Tel.
● Telescopes with larger FoV
● Novel trigger concepts
● Higher detection efficiency for 

Cherenkov light
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SiPM requirements (Dynamic Range)

γ – Characteristics 

arrival time window: 1ns…3ns

angular size: 0.1°…~1°

photon yield: ≈100 ph/m² (1TeV γ)

wavelength range: 300nm…600nm

necessary 
dynamic range per 
camera pixel <104 
phe

SiPM cell sizes 
of 100µm x 
100µm are just 
at the limit
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SiPM requirements (dark rate)

Night Sky Background (photons) per MAGIC Camera Pixel:
109 Hz

2•106 Hz NSB per mm² in the camera pixel

50% PDE 
and 

Intrinsic Dark rate = 10% NSB

105 Hz/mm² intrinsic dark rate is the baseline

105 Hz dark rate is possible at room temperature with available prototype SiPMs
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SiPM requirements (optical crosstalk)

In avalanche produced photons cause inter SiPM pixel crosstalk
Overestimation of the signal
Influences signal shape studies for g/h separation

Crosstalk is proportional to charge generated in breakdown

Solutions:
• Trenches between SiPM pixels
• lower Gain

 lower electric field  lower breakdown probability  lower PDE
• Modelling

simulations can fit crosstalk measurements over a wide range 
of parameters (Temperature of hot electrons; photon emission 
efficiency)
A crosstalk probability of a few percent can be corrected for by 
simulations
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Trenches to suppress crosstalk
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Fast and slow Crosstalk Component

1

2

3

n

p

1: picoseconds (conversion and immediate breakdown)
2: ~ 1nsec (conversion, phe drift and breakdown)
3: ~10-100nsec (conversion; diffusion; drift and breakdown)

Component three contributes to afterpulsing (dark rate) in 
addition to trapped electrons in the avalanche region
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Application of SiPMs in IACTs

R&D necessary on:

Photon concentrators: 
to overcome dead space 

between SiPMs

Electronic readout:
low power consumption
ultra high bandwidth
summing amplifier

Cooling:
thermal isolation

Two camera pixel

SiPM sizes of 5x5 mm² require 
interconnection of several SiPM to one 
camera pixel with one common
signal readout
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Signal Readout

● 1 GHz broadband buffer/preamplifier after each SiPM
● all SiPMs (4) of one camera pixel connected to summing amplifier
● good HF layout mandatory
● ASIC is not fast enough

Fast transimpedance amplifier  currently developed at MPI

High Bandwidth Inverting Amp e.g OPA 695

SiPM

Camera Pixel Signal Output
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Photon Concentrators

+ Additional µ-lens array on top of each SiPM

1. Lightguide made out of Plexiglas

2. Winston Cones

Light concentrators needed to reduce dead area between SiPMs
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Cooling

● Moderate Cooling (-20 °C) 
needed to reduce dark noise rate 
below NSB

● Might not be necessary with new 
SiPMs

● double glazed Camera entrance 
window 

– Gas with low thermal 
conductivity SF6 or Ar
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Comparison G-APD / PMT

Large areas
Large gain
Single photoelectron resolution
Well established technology
Fast signals (~ns)

Sensitive to magnetic fields
Damaged in daylight/sunlight
Afterpulsing
Use of high voltage
Bulky and fragile
Average QE <20%
Temperature stability <0.5%/C

PMTs G-APD

Small 
Large gain ~105- ~106

Single photoelectron resolution
Early stage of commercialization
Signals ~ns to several 10 ns

Not sensitive to magnetic fields
Not Damaged in daylight/sunlight
No Afterpulsing but optical crosstalk
Bias < 100 V
Electrical and mechanical robust / light weight
Average QE <20%, possible > 50%
Temperature stability <3%/C
Low power consumption 40μW per mm²
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PDE dependence on the Bias 
Voltage
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