Photo-Detectors in Astroparticle Physics Experiments

Nepomuk Otte University of California, Santa Cruz Santa Cruz Institute for Particle Physics

Outline

- Astroparticle physics
 - Cosmic rays, VHE gamma-rays, neutrinos
- Detection of cosmic rays
- Detection of gamma rays from ground
- G-APDs for Cherenkov telescopes
- Two slides about large hemispherical PMTs

Particle Astrophysics

What are the cosmic accelerators?

- Cosmic Rays
- Gamma Rays
- Neutrinos

Often one deals with very low fluxes Need large detector areas/volumes

-> Atmosphere / ice / water

Air Showers

Use measured air shower characteristics for:

- calorimetry
- particle ID
- tracking

Readout:

- Fluorescence light
- Cherenkov light
- Particles
- Radio
- Not like in a laboratory
 - Remote places
 - Weather
 - Inhomogenous detector medium
 - Background (light from the sky)

Light from Air Showers

Cherenkov Light

Fluorescence Emission

- Emitted by shower particles
- Continuum emission
- Typically 10^{-3} of the energy of the primary
- Directed forward in narrow cone
 - * ~1deg opening angle
 - * Illuminates 100,000 m² area on ground
- Used to detect cosmic rays and gamma rays with energies above E > 10^{10} eV

- Deexcitation of atmospheric nitrogen molecules
- Line spectrum
- Typically 10⁻⁵ of the energy of the primary
- Isotropic emission
 - $\rightarrow\,$ can be viewed from large distances
- Used to detect particles with energies above $E > 10^{16} eV$

Pierre Auger Observatory

Detection of cosmic rays above 10¹⁶ eV

Surface array: 1600 stations 1.5 km spacing

Detects shower particles coming to ground

Fluorescence detectors:

4 telescope enclosures6 telescopes per enclosure24 telescopes in total

One 4-fold Event

E~10¹⁹ eV

Fluorescence Detectors

One AUGER fluorescence telescope

- Shower observed from 20-30 km distance
- Shower development takes several 100 µs

Reconstruct:

- Energy from the light yield
- Particle ID from shower maximum
- arrival direction with stereoscopy and Information from surface array

Nepomuk Otte

Observation of Cosmic Rays from Space

shower parameter:

angular size:

a few degree up to several ten degree $(\approx 5^{\circ} \text{ for } 1^{^{20}} \text{eV zenith angle} < 75^{\circ})$

photons arriving at EUSO: ≈550 ph/m² (10²⁰ eV zenith angle 45° in half of FOV of EUSO optics)

shower duration: ≈100µs...≥300µs

wavelength range: 330nm...400nm

Cherenkov light:

opening angle: $\approx 1^{\circ} \rightarrow 1$ km diam. for shower in 10km at 60° zenith angle photons arriving at EUSO: \approx 500 ph for albedo of 5%

Auger

Gamma-Ray Instruments

satellites

Cherenkov telescopes Nepomuk Otte

water Cherenkov detectors and particle detectors 10

Imaging Technique

MAGIC I camera

Background:

Charged cosmic rays (hadrons)
10³...10⁴ times more abundant

Background rejection:

Based on shower shapeOrientation of the image

Observation of Gamma-Rays from Ground

80+ sources detected in the last 20 years

VERITAS in Arizona

MAGIC in the Canaries

Energy Range: ~100 GeV - ~10 TeV

Energy Resolution: ~15%

Angular Resolution: 0.05°- 0.1°

Sensitivity: 1Crab in < 30 sec Field of View: $\sim 4^{\circ}$

H.E.S.S. In Namibia

Now in planning: arrays of ~50 telescopes

Use of Photomultiplier in IACTs

Cherenkov telescopes f/D >= 1 -> large plate scale -> large photon sensors 1" diameter

PMT advantages/disadvantages

Large areas Large gain Single photoelectron resolution Well established technology

Sensitive to magnetic fields Damaged in daylight/sunlight Afterpulsing Use of high voltage Bulky and fragile Aging Costly Average QE <20%

MAGIC I camera

Cherenkov Light Detection Efficiency

Cherenkov telescopes have an optical throughput of about 10% The detection efficiency of the photomultipliers is the bottleneck

Higher throughput means:

- lower threshold
- better energy resolution
- better angular resolution
- better background suppression

With immediate impact on the science:

- deeper into the universe
- many sources have intrinsic cutoffs below 100 GeV
- morphology studies:
 - pulsar wind nebula shell type supernova remnants pair halos around AGN

 $\begin{array}{l} \text{High efficiency sensors} \\ \scriptstyle \rightarrow \ \text{better physics} \end{array}$

The G-APD

a promising photon detector concept invented in Russia in the 80's available now in large quantities and from many producers

Major advantages:

- High intrinsic QE of a semiconductor
- Geiger mode operation \rightarrow sensitive to single photons
- Bias voltage < 100 V
- High intrinsic gain
- Is not damaged in daylight
- Mechanical and electrical robust

P. Buzhan et al. http://www.slac-stanford.edu/pubs/icfa/fall01.html

Factors limiting the Photon Detection Efficiency

- Geometrical occupancy of the Geiger diodes (aimed at 70%)
- Reflection losses on the SiPM surface (<10% possible)
 - Can be tuned by coating
- λ_{min} determined by thickness of surface implantation
 λ_{max} determined by thickness of active volume
- Classical Quantum efficiency (~100%)
- Breakdown Initiation Probability (~90%)
 - Function of the electric field in the avalanche region

The short List of Requirements

- Price: G-APD are presently 5-10 times more expensive than PMT want to be cheaper than PMTs (not a matter of production costs)

- PDE 300nm-600nm: 100% is the limit but we would even be happy with 60% in the blue seems possible in the future Biggest challenges

- **Size:** 5x5 mm² to 10x10 mm²

- Dark count rate: < 100 kHz/mm² needed Thermal generated Charge carriers, afterpulsing, optical crosstalk achieved by some devices at room temperature otherwise moderate cooling necessary
- **Temperature Dependence of Gain:** varies between ~5%/K and 0.3%/K; 0.3%/K is ok Requires large breakdown voltages, small cell capacitances, high overvoltages

- Optical Crosstalk: can be several 10% needed are less than a few % Trenches between cells \rightarrow now pursued by most producers

Suitable G-APD become available now

Nepomuk Otte

0 0

0 0

0 0

Test on La Palma with MAGIC

Array of 4 MPPCs: Light catchers with factor 4 concentration; 6x6mm² to 3x3mm² MPPC-33-050C from Hamamatsu:

sensor size: $3x3mm^2$ single APD size: $50x50\mu m^2$ nominal bias: 70.4Vdark rate at nominal bias: $\sim 2MHz$ gain at nominal bias: $7.5*10^5$ crosstalk at nominal bias: 10%

One bias for all MPPCs

Nepomuk Otte

A big promise

Array mounted next to the MAGIC camera for 3 nights for fine tuning and tests

G-APDs signals recorded by the MAGIC DAQ for each trigger

- Array not removed or protected during day
- It was raining for one day; no problem!

Dark rate at night ~ 20 MHz 10 times higher than intrinsic dark rate of MPPC

Recording Photons from Air Showers with G-APD

Shower Signals: MPPC vs PMT

event selection: two PMTs next to MPPCs with more than 15 photoelectrons in each tube

~300 events from ~30 min data

On average the MPPC records 1.6 times more photons

A Prototype G-APD Camera

Reactivation of the CT3 telescope of HEGRA

<image>

A test module of a G-APD camera built at ETH

Thanks to I. Braun (ETH) for providing picture and info about DWARF/FACT

Nepomuk Otte

Tests planned with one of the former HEGRA telscopes (CT3) this summer

More Camera Developments

For EUSO and Cherenkov telescopes

Hiroko Miyamoto MPI for Physics, Munich

Neutrino Detectors

muon

TeV telescopes: ICECube/Antares/Nestor,Baikal,Dumond

MeV detectors Frejus, Macro, IMB.Kamioka,SuperK/SNO

Use all large surface PMTs

nuclear reaction

Large Spherical PMT

Used in:

- Surface Cherenkov detectors: Auger SD, ICE top
- Neutrino detectors: ICEcube, ANTARES, Baikal, ...

Hemispherical Light Amplifier

Daniel Ferenc et al. NIM-A 567 (2006)

Bombard fast scintillation crystal with photoelectron Readout scintillation light with G-APD

Vacuum Silicon Photomultiplier

Group in Naples Italy

Direct detection of 10kV photoelectron With MPPC

NIM-A, Volume 594, September 11, 2008

See http://tipp09.kek.jp/

Summary

- There is big need for high efficiency photo-detectors in astroparticle experiments
- All diameters between a few mm to several 10 cm
- All application have in common
 - Low photon intensities in mostly large backgrounds
 - Blue sensitivity 300-400 (600) nm
 - Single pe resolution
- Currently used by all experiments: the classical PMT
- The G-APD is a promissing photo detector
 - Some applicable G-APDs exist
 - We want more
 - Lower prices
 - Higher photon detection efficiencies

Schwarzschild-Couder Telescope

Schwarzschild-Couder Telescope Design -- II

Scale 9m design to 11.5m; complete redesign in future

Replication technology (electroforming, glass slumping, Carbon/Graphite Fiber Reinforced Plastic) can be used to reduce costs of manufacturing of aspheric mirrors

Primary mirror: 76 ~ 1m² panels Secondary mirror: 35 ~ 1m² panels Total: 111 segments

> Primary diameter: 11.5 m Central hole: 5 63 m Secondary diameter: 6.6 m

PSF less than: 3 arcmin (within FoV)

 $0.05 \text{ deg} \rightarrow 5 \text{mm}$

Small plate scale

Advantage:

Present AGIS base line

No need for large photon detectors

Future Plans

Cherenkov photon density on ground for a 50 GeV gamma ray

Large arrays of Cherenkov telescopes (~50) Extending energy range to lower and higher energies

> Two ongoing initiatives: AGIS in the US CTA in Europe

J. Buckleys view of AGIS

AGIS:

- \$ 120 million project
- •Array of ~ 50 telescopes
- •Schwarzschild Couder telescopes
 - 8° FoV
 - Camera with 15 000 pixel
 - Pixel size: 3x3 5x5 mm²

Blue and Green sensitive Devices

Astroparticle experiments need Blue sensitive devices

Blue light is absorbed within the first few 100 nm

 \rightarrow thin entrance windows

Electrons have a higher probability of starting an avalanche

→ Need p-on-n structure for blue sensitivity

Or new concepts e.g. back side illumination

Pursued by the HLL/MPI for Physics

D. Renker, E. Lorenz, JINST 4)2009)

Temperature Dependence

Temperature dependence of parameters increases systematic uncertainties

- energy estimation
- flux measurements

Solutions:

- Compensate with external thermistor
- Thermal control (~1 degree)
- Do a good job producing devices
 - * Low breakdown voltages
 - * Low cell capacitances
 - * High overvoltage

DG= Tempcoef*BrkdwnVoltage/DOvervoltage

A good device

Dark Counts

Needs to be below the photon background from the night sky

G-APD are noisy devices:

 $100 \text{ kHz} - 1 \text{ MHz per mm}^2$

Rate depends on many parameters

Mostly thermal generated e/h-pairs

Additional effects:

- Afterpulsing
- Tunneling

In astroparticle physics: needs to be lower than photon background rate

Rates of 100 kHz/mm² should do

rate at 35 V bias Rate [kHz] Factor 2 change every 5° C 10³ Factor 2 change every 12° C 10² -10 -5 ٥ 5 10 15 20 25 30 Temperature [C]

1mm² G-APD from ST Microelectronics

Affects lower energies Trigger: increase in accidental triggers Analysis: noise in shower images

Optical Crosstalk

Avalanches emit photons ~1 photon per 10⁵ e/h-pairs

Causes additional cells to fire -> pile up

Non-negligible probability that 5 or more cells fire Increase of accidental triggers in IACT -> higher energy threshold

Probability needs to be $\sim 1\%$ not to be dominating the rate of accidental triggers

Most promising solution: trenches between cells Nepomuk Otte Example from ST Microelectronics

Fig. 5. Scanning electron microscope top view of a pixel of an array with trench technology. In the inset is shown a vertical enlarged section where it is possible to view the trench details. Trenches are $10 \ \mu m$ deep and $0.8 \ \mu m$ large.

IEEE PTL, VOL. 18, NO. 15, 2006

Future Plans in VHE Astrophysics

Goals:

- 10x improved sensitivity
- Extended energy range

Require:

- Large arrays of Cherenkov Tel.
- Telescopes with larger FoV
- Novel trigger concepts
- Higher detection efficiency for Cherenkov light

[TeV/cm²s] GLAST 10⁻¹¹ Crab (10⁻¹²) ↓ 10⁻¹² 10% Crab MAGIC 10⁻¹³ E.S.S. 1% Crab 10⁻¹⁴ 10^{4} 10^{5} 100 1000 10 E [GeV]

US initiative: AGIS

SiPM requirements (Dynamic Range)

γ – Characteristics

arrival time window: 1ns...3ns

angular size: 0.1°...~1°

photon yield: \approx 100 ph/m² (1TeV γ)

wavelength range: 300nm...600nm

SiPM cell sizes of 100µm x 100µm are just at the limit

SiPM requirements (dark rate)

Night Sky Background (photons) per MAGIC Camera Pixel: 10⁹ Hz

10⁵ Hz dark rate is possible at room temperature with available prototype SiPMs

SiPM requirements (optical crosstalk)

In avalanche produced photons cause inter SiPM pixel crosstalk →Overestimation of the signal →Influences signal shape studies for g/h separation

Crosstalk is proportional to charge generated in breakdown

Solutions:

- Trenches between SiPM pixels
- lower Gain

 \rightarrow lower electric field \rightarrow lower breakdown probability \rightarrow lower PDE

Modelling

 \rightarrow simulations can fit crosstalk measurements over a wide range of parameters (Temperature of hot electrons; photon emission efficiency)

A crosstalk probability of a few percent can be corrected for by simulations

Trenches to suppress crosstalk

without trenches (Gain 3*10⁶)

with trenches (Gain 3*107)

done by MEPhI

Fast and slow Crosstalk Component

picoseconds (conversion and immediate breakdown)
 ~ 1nsec (conversion, phe drift and breakdown)
 ~ 10-100nsec (conversion; diffusion; drift and breakdown)

Component three contributes to afterpulsing (dark rate) in addition to trapped electrons in the avalanche region

Application of SiPMs in IACTs

SiPM sizes of 5x5 mm² require interconnection of several SiPM to one camera pixel with one common signal readout

R&D necessary on:

Photon concentrators: to overcome dead space between SiPMs

Electronic readout:

low power consumption ultra high bandwidth summing amplifier

Cooling:

thermal isolation

Signal Readout

Fast transimpedance amplifier \rightarrow currently developed at MPI

- 1 GHz broadband buffer/preamplifier after each SiPM
- all SiPMs (4) of one camera pixel connected to summing amplifier
- good HF layout mandatory
- ASIC is not fast enough

Photon Concentrators

Light concentrators needed to reduce dead area between SiPMs Nepomuk Otte

Cooling

- Moderate Cooling (-20 °C) needed to reduce dark noise rate below NSB
- Might not be necessary with new SiPMs
- double glazed Camera entrance window
 - Gas with low thermal conductivity SF₆ or Ar

Comparison G-APD / PMT

PMTs

Large areas Large gain Single photoelectron resolution Well established technology Fast signals (~ns)

Sensitive to magnetic fields Damaged in daylight/sunligh Afterpulsing Use of high voltage Bulky and fragile Average QE <20% Temperature stability <0.5%/ G-APD

Small Large gain ~10⁵- ~10⁶ Single photoelectron resolution Early stage of commercialization Signals ins to several 10 ns

Not sensitive to magnetic fields Not Damaged in daylight/sunlight No Afterpulsing but optical crosstalk Bias < 100 V Electrical and mechanical robust / light weight Average QE <20%, possible > 50% Temperature stability <3%/C Low power consumption 40µW per mm²

PDE dependence on the Bias Voltage

