

A new Clear Concept for DEPFET Active Pixel sensors

Stefan Rummel*, R. Richter*, H-G. Moser*, L. Andricek*

*Max-Planck-Institut für Physik – Halbleiterlabor

430. WE-Heraeus-Seminar Accelerators and Detectors at the Technology Frontier Bad Honnef

- DEPFET applications in HEP
- DEPFET principle
- The clear process
- Internal amplification
- The capacitive coupled Clear Gate

DEPFET application in HEP

halbleiterlabor

- •Applications:
 - •Vertex detector at ILC
 - •Vertex detector at SBelle

•Requirements:

- ≻Good point resolution ILC: $24\mu m$ SBelle ~ $50\mu m$
- >Small material budget ~0.1 % X_0 per layer
- ≻High readout rate: Frame rate ~ 20kHz (100kHz) ~50-100ns/Row
- ≻Radiation hardness 100kRad/~1MRad

DEPFET - Depleted Field Effect Transistor

- Combination of detector grade silicon with first p-FET amplification stage in each pixel
- Potential minimum for electrons is created under the channel by sideward depletion and an additional **n-doping**
- Electrons in the "internal gate" modulate the transistor current
- Signal charge is removed via a clear contact
- Large sensitive volume due to fully depleted bulk
- Low noise caused by a small input capacitance and internal amplification
- Transistor can be switched off by external gate – charge collection is then still active!

SWITCHE

- Column parallel architecture for fast readout
- Local charge to current conversion no charge transfer
- Low power dissipation only one row active while readout

- Gates are connected row wise
- Drains are connected column wise
- Sample Clear Sample
- Difference of two consecutive samples: $I_{SIG} = Sample 1 - Sample 2 = (I_{PED} + I_{SIG}) - I_{PED}$

- Clear process
- Internal amplification
- And others...

Full clear:

Incomplete clear:

Incomplete clear causes:

- Loss of signal pulse height: I_{SIG} = (I_{PED} + I_{SIG})-(I_{PED} + I_{REM})
- Increase of noise

Accelerators and Detectors at the Technology Frontier, Bad Honeff

Internal amplification

- Charge to current conversion gain: $g_q = dI_{ds}/dQ_{int}$
- Determines the signal: $I_{sig} = g_q^* Q$ (Q ~ 4000e for 50µm Si)
- In presence of external noise SNR ~ g_{q}
- It depends on the
 - Geometry of the FET
 - Current
 - Clear Gate voltage

Standard devices: ~ 350pA/e-

Up to 1400pA/e⁻ demonstrated

Optimal operation point

- Full clear
- High internal amplification
- Tradeoff neccesary!

- low Clear Gate voltage
- high Clear Gate voltage

-

• The capacitive coupled Clear Gate

- Reducing the potential barrier via build in capacitor
- DC potential defined by resistor
- Potential change given by:

$$\delta U_{clg} = \frac{C_{clg-clear}}{C_{tot}} \cdot \Delta U_{clear} + \frac{C_{clg-gate}}{C_{tot}} \cdot \Delta U_{gate}$$

(capacitive voltage divider)

halbleiterlabo

- Both parasitic and intended coupling could be extracted from layout:
 - Clear Gate Clear: ~210mV/V
 - Clear Gate Gate: ~160mV/V
- Typically voltage swing of Clear and Gate are similar ~ 10V

- Twofold improvement:
 - Clear Gate is lowered when row select is applied
 - Clear Gate is increased when reset pulse is applied

- The capacitive coupled Clear Gate scheme is working
- The internal amplification is significantly improved 470pA/e⁻ with a voltage swing of 10V on the clear!
- The readout noise is reduced by 35%!

