

Simulation of High Current Linacs

R. Tiede April 28'th, 2009

430. WE-HERAEUS-SEMINAR "Accelerators and Detectors at the Technology Frontier"

- The LORASR beam dynamics code
 - A new space charge routine based on a PIC 3D FFT algorithm
 - Tools for loss profile and machine error study calculations
- Description of the 'Combined Zero-Degree Structure' ('Kombinierte Null Grad Struktur – KONUS') concept
- KONUS design examples
- Summary and outlook

LORASR Code Features - Overview

Longitudinale und <u>ra</u>diale <u>S</u>trahldynamikrechnungen mit <u>R</u>aumladung Longitudinal And Radial Beam Dynamics Calculations including Space Charge

- General :
 - Multi particle tracking along drift tube sections, quadrupole lenses, short RFQ sections including fringe fields and dipole magnets.
 - Running on PC-Windows platforms (Lahey-Fujitsu Fortran 95).
- Available Elements :

• GUI :

Accel. Gap Calculation Routine : Single Particle Tracking - 30 Steps Per Gap

E-field shape distributions for 10 gap geometries with different g/\emptyset ratios are stored as input parameter list.

The evolution of the single particle coordinates x, x', y, y', ΔW , $\Delta \Phi$, is performed in a 30 step per gap procedure for 4 different radial zones. The field components at the particles positions are linearly interpolated from the stored fields at the adjacent radial zones.

GAP Field Modelling : Upgrade Options

- Read in the RF field of each cell, as generated by MICROWAVE STUDIO[™], from an external file.
 - Accuracy (mesh resolution)?

- Consideration of dipole and quadrupole content of IH- and CH-gaps).

Magnetic Quadrupole Lens

Hard edge approximation :

Focusing lens :

$$\begin{pmatrix} X_2 \\ X'_2 \end{pmatrix} = \begin{pmatrix} \cos kL & \frac{1}{k}\sin kL \\ -k\sin kL & \cos kL \end{pmatrix} \begin{pmatrix} X_1 \\ X'_1 \end{pmatrix};$$

Defocusing lens :

$$\begin{pmatrix} X_2 \\ X'_2 \end{pmatrix} = \begin{pmatrix} \cosh kL & \frac{1}{k} \sinh kL \\ k \cdot \sinh kL & \cosh kL \end{pmatrix} \begin{pmatrix} X_1 \\ X'_1 \end{pmatrix};$$

$$\mathbf{k} = \left(\frac{q \cdot B' \cdot c}{\beta \cdot \gamma \cdot m_o}\right)^{1/2}$$

Space Charge Calculation by the "Particle-In-Cell" (PIC) Method

The Poisson equation is solved on the nodes of a Cartesian grid:

$$\Delta \varphi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \varphi = -\frac{\rho}{\varepsilon_0} \quad on \ G \subseteq \Omega$$

Boundary condition options: b) $\varphi = 0$ on ∂G

a)
$$\varphi = 0$$
 on $\partial \Omega$

c)
$$\varphi = 0$$
 at $R \to \infty$

- Charge discretization on a 3D Cartesian grid and calculation of the charge density distribution $\rho_{j,k,l}$
- Solving the Poisson equation $\Delta \varphi = -\rho / \varepsilon_0$ on the grid
- Calculation of the electric field components on the grid from $\vec{E} = -grad \phi$
- Interpolation of the grid field values to the exact position of each macro particle.

DR.WILH

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt

- 1.) Grid charge discretization ($O(N_P) + O(N_G)$)
- 2.) Solving the Poisson equation ($O(N_G \cdot \log_2 N_G)$)
- 3.) Calculation of the grid \vec{E} -field components (O(N_G))
- 4.) Interpolation of the \vec{E} -field to the particle positions (O(N_p))

Number of operations : ~ $(N_{particles} + N_{meshpoints} \times log_2 N_{meshpoints})$

Benchmarking of the New FFT Algorithm

Example: GSI Proton Linac preliminary design, LORASR Run on a 733 MHz, Intel PIII PC

Error Study Tools for LORASR: Classification of Error Types

Static errors:

- Appear during design and running in phase. Can be detected and cured.
- Examples: quadrupole, cavity, drift tube misalignment, manufacturing errors (geom. lengths), field-flatness, quadrupole gradient errors.

Dynamic errors:

- Appear during operation. Are time-dependent. Remain often uncorrected.
- Examples: rf source instabilities (amplitude, phase), mechanical vibrations, transient beam loading.

LORASR Error Studies Analysis Tools Loss Profile for Single Runs

KONUS Concept

"Standard" linac design (up to \approx 100 MeV) : Alvarez DTL + FODO beam dynamics.

Alternative :

- H-Type DTL (IH or CH) and KONUS beam dynamics, each lattice period divided into 3 regions with separated tasks:
 - Main acceleration at $\Phi_s = 0^\circ$, by a multi-gap structure (1).
 - Transverse focusing by a quadrupole triplet or solenoid (2).
 - Rebunching: 2 7 drift tubes at $\Phi_s = -35^\circ$, typically (3).

ALVAREZ - Cavity,E₀₁₀,108 MHz

Transverse KONUS Beam Dynamics: Quadrupole Triplet Channel

IH cavity of GSI HLI injector: first built cavity containing several KONUS periods

Applications

- Proton Injector for the GSI FAIR Facility
 325 MHz, 70 mA protons, 3-70 MeV, 0.1% duty cycle.
- Superconducting CH-DTL section for IFMIF (IAP proposal)
 175 MHz, 125 mA deuterons, 2.5 20 MeV/u, cw operation.

FAIR Proton Linac Design

FAIR Proton Linac Design: Machine Error Studies

R. Tiede, Institute for Applied Physics (IAP), Goethe-University Frankfurt

S.C. CH-Linac for IFMIF

100% common beam envelopes of 100 runs, 10⁶ particles each

red: nominal run green: error settings 1 blue: error settings 2

Setting1	Setting2
$\Delta X_{\text{lens}} = \pm 0.1$ $\Delta Y_{\text{lens}} = \pm 0.1$	$\Delta X_{\text{lens}} = \pm 0.2$ $\Delta Y_{\text{lens}} = \pm 0.2$
$\Delta \varphi_{x} = \pm 1.5$ $\Delta \varphi_{y} = \pm 1.5$ $\Delta \varphi_{z} = \pm 2.5$	$\Delta \varphi_{x} = \pm 3.0$ $\Delta \varphi_{y} = \pm 3.0$ $\Delta \varphi_{z} = \pm 5.0$
$\Delta U_{gap} = \pm 5.0$ $\Delta U_{tank} = \pm 1.0$	$\Delta U_{gap} = \pm 5.0$ $\Delta U_{tank} = \pm 1.0$
$\Delta \boldsymbol{\varphi}_{\text{tank}} = \pm \ 1.0$	$\Delta \phi_{\text{tank}} = \pm 1.0$

- A new LORASR PIC 3D FFT space charge routine was developed and implemented to the LORASR code. It provides the ability to perform simulations with up to 1 million macroparticles routinely and within a reasonable computation time. This will give a strong impact to the design of high intensity linacs (e.g. GSI FAIR Facility Proton Linac, IAP-proposal for IFMIF Accelerator, ...).
- Machine error settings routines and data analysis tools were developed and applied for error studies on the FAIR Proton Linac and the IAP IFMIF proposal.