Analysis of electromagnetic showers in CALICE Analog Hadron Calorimeter prototype (AHCAL)

Sergey Morozov
DESY, Hamburg
Analysis of electromagnetic showers in CALICE AHCAL prototype

A schematic layout of the International Linear Collider (ILC)

The Large Detector Concept

A Higgs decay event (simulation)
Analysis of electromagnetic showers in CALICE AHCAL prototype

AHCAL prototype at CERN testbeam

HCAL layer with 216 tiles (3x3, 6x6, 12x12 cm)

3x3 scintillator tile with WLS fiber and SiPM

Silicon Photo Multiplier (SiPM)
size ~ 1mm, 1156 pixels

A SiPM's single photo-electron peaks

A pixel saturation effect
Electromagnetic shower in a hadron calorimeter is a useful tool:

- high density of energy losses => to study the saturation effects and to validate calibrations
- EM shower develops completely in calorimeter volume => to check reconstruction of energy and energy resolution
- well understood physics (~2% level of uncertainty) => to validate MC digitization
Analysis of electromagnetic showers in CALICE AHCAL prototype

CALICE tile AHCAL prototype at CERN 2007 test beam facility

- 38 layers (30 with high granularity at central region)
- each layer has 2cm of absorber (steel) and 0.5cm of active scintillator layer
- length: 114.57 cm, hadronic: 5 λ_0, e/m: 43.7 X_0

Positron runs collected:
- Energy: 10 - 50 GeV
- Position of beam: 0, +6cm, -6cm
- Angles: 0,10,20,30 degrees

AHCAL prototype:

Sergey Morozov
28/04/2009
DESY
Analysis of electromagnetic showers in CALICE AHCAL prototype
the very first results from e+ data analysis..

- 4 data samples have been analyzed: large variations in the reconstructed energies expected to be consistent
- residual to linearity is about 4% at 40 GeV and 7% at 50 GeV – too big!
- large variations in the energy resolution curves is a hint to problems in the calibration procedure which can be improved

Further investigations are needed!
Analysis of electromagnetic showers in CALICE AHCAL prototype
..a lot of work was done to improve the energy reconstruction..

Improvement of calibration

Longitudinal energy profile of muons

- remove “bad” tiles
- new MIP calibration
- new saturation correction

improved profile is in agreement with expectations

+ temperature correction of SiPM response has been applied for all tiles
All corrections have been applied - improvement of linearity

Better consistency between data samples

Max. deviation from linearity of ~ 4%!

40 and 50 GeV still need more accurate analysis
Analysis of electromagnetic showers in CALICE AHCAL prototype

Improvement of energy resolution after all corrections have been applied

- removing “bad” tiles from analysis
- more accurate calibration
- temperature correction for SiPM

can really improve the data!

Sergey Morozov

DESY

28/04/2009
Analysis of electromagnetic showers in CALICE AHCAL prototype

Longitudinal profile study..

An electromagnetic shower's energy profile:

\[\frac{dE}{dt} = p_1 \cdot t^{p_2} \cdot e^{-p_3 \cdot t} \]

where \(E \) – energy deposited, \(t \) – depth in calorimeter

The maximum depth of an e/m shower in calorimeter for e+(e-):

\[t_{\text{max}} = \left[\ln\left(\frac{E}{e_c}\right) - 0.5 \right] X_0 \]

\(E \) – particle energy
\(e_c \) – critical energy (\(\approx 33.6 \text{ MeV} \))

Calculated: \(t_{\text{max}} \approx 5.2 X_0 \)
From data: \(t_{\text{max}} \approx 5.3 X_0 \)

Quite good agreement!

Sergey Morozov 28/04/2009

DESY
Analysis of electromagnetic showers in CALICE AHCAL prototype data (all correction applied) (black) and fully digitized MC (red)

The idea is:
- study a “tower” of 3x3 tiles around the beam impact point
- compare the data and MC in:
 the central tile: high signal, big saturation
 the peripheral zone: low signal, small saturation
- study the calibration quality for single tiles

We can also study an individual tile response (we have a highly granular calorimeter!)

Sergey Morozov
28/04/2009
DESY
Analysis of electromagnetic showers in CALICE AHCAL prototype

data (before corrections) (black) and MC (red)

data (all correction included) (black) and MC (red)

Not a big effect.. as expected
An agreement is fine

Significantly better after applying the corrections!
Summary & Outlook

- Electromagnetic showers in Analog Hadron Calorimeter is a very good tool for validating the calibration procedure.

- An expected 2% level of uncertainties in reconstructed energies of positrons is achieved after an accurate and precision calibration and corrections.

- The linearity of the calorimeter response for positrons is less then 4% (residuals to the linear fits) in 10 – 50 GeV range.

- Monte Carlo study shows quite good agreement with a data in integral scale.
Analysis of electromagnetic showers in CALICE AHCAL prototype

Backup slides
Analysis of electromagnetic showers in CALICE AHCAL prototype

Deep Analysis - ON!
Analysis of electromagnetic showers in CALICE AHCAL prototype

Monte Carlo simulation..

CALICE Mokka based GEANT4 framework simulation:

- detailed CERN'2007 test beam setup geometry

- high granularity layers (1x1cm tiles) with “ganging” after the simulation to AHCAL prototype tile pattern (3x3, 6x6, 12x12 cm tiles)

- digitization (conversion energies to MIP, MIP to SiPM pixel, add the pixel statistics, add saturation, conversion back to ADC counts, x-talk (~10% per tile) included)

- all calibration and saturation are from testbeam condition DataBase!

- using the same processors of CALICE Marlin to analysis